Fabrication of in situ TiC reinforced aluminum matrix composites

نویسندگان

  • X. C. TONG
  • A. K. GHOSH
چکیده

In the present work, the room and elevated temperature mechanical behavior of Al/TiC, high-strength Al-Si/TiC and the elevated temperature-resistant Al-Fe(-V-Si)/TiC composites has been evaluated. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum based composites.The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit high Young’s moduli and substantial improvements in room and elevated temperature tensile properties compared to those of rapidly solidified alloys and conventional composites.The Young’s modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman limits in keeping with the strong interfacial bonding. In the micromechanics approach, the principal strengthening mechanisms for the present dispersed particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening. The RS technique was used in the present work to maximize strength and ductility for a particular volume fraction, and influence the degree of flexibility available to meet these requirements: a fine, uniform particle size distribution; a high interfacial strength; control of particle shape; and a ductile matrix. C © 2001 Kluwer Academic Publishers

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of in situ TiC reinforced aluminum matrix composites Part I: Microstructural characterization

In the present work traditional ingot metallurgy plus rapid solidification techniques were used to in situ produce Al-TiC composites with refined microstructures and enhanced dispersion hardening of the reinforcing phases. Microstructural characterization of the experimental materials were comprehensively done by optical, electron microscopy and X-ray diffraction. The results show that the in s...

متن کامل

IN-SITU FABRICATION PROCESS OF AL- TIC COMPOSITE BY SLAG

The new in situ method for AI-TiC composite fabrication has been carried out. In this method, fabrication of AI-TiC composite by simultaneous introduction of titanium oxide and carbon into aluminum melt was investigated.. Under the process conditions, titanium and carbon reaction results in titanium carbide whiskers. The salt containing keriolite (Na3AIF6), titanium oxide (TiO2) and graphite us...

متن کامل

Tribological Behavior of Reinforced and Unreinforced High Chromium Cast Iron

In this paper, the metal matrix composites containing 22 wt % Cr, 2.5 wt % C and 2 to 16  volume percent TiC were processed by solidifying Fe-Cr-Ti-C in which precipitation of titaniumcarbide and chromium carbide occurred. The microstructure and abrasion resistance of in-situ synthesized composites were compared with the unreinforced high chromium white cast iron (HCWCI) containing 22 w. t. % C...

متن کامل

Influence of TiC particulate reinforcement on the corrosion behaviour of Al 6061 metal matrix composites

Aluminum matrix composites (AMCs), reinforced with ceramic particulates, have significant applications in the field of aerospace, marine, automobiles, sports and recreation. Al-TiC particulate composite has better potential for high-temperature applications. The corrosion behaviour of Al 6061-TiC particulate composites prepared by stir casting route, has been explored in chloride medium using e...

متن کامل

Titanium Carbide Nanofibers-Reinforced Aluminum Compacts, a New Strategy to Enhance Mechanical Properties

TiC nanofibers reinforced Al matrix composites were produced by High Frequency Induction Heat Sintering (HFIHS).The titanium carbide nanofibers with an average diameter of 90 nm are first prepared by electrospinning technique and high temperature calcination process. A composite solution containing polyacrylonitrile and titanium isopropoxide is first electrospun into the nanofibers, which are s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001